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§1. Recently, in connection with various engineer-
ing applications, interest has arisen in the hydrody-
namics of a ferromagnetic fluid. Such a medium can
be realized by colloidal dispersion of fine ferromag-
netic particles in an ordinary fluid. The magnetic
moment of unit volume M can reach considerable val-
ues, becoming comparable with the magnetic moment
of solid ferromagnetics.

Equations for a ferromagnetic fluid were first de-
rived in [1]:

o {%? + (VW) 'v] =—Vp+aVv+MVH,  (L1)

YV o (5 G o] = o, (12)

divv=0, div(H-+4M)=10, rotH=0. (1.3)

In the derivation of these equations it was assumed
that the fluid was magnetized to saturation by a strong
magnetic field, Therefore, the absolute value of the
magnetization M is not a function of the field H and is
determined only by temperature. If the magneticfields
are not too strong and saturation is not attained, in
Eq. (1.1) we must have (MV)H instead of MVH.

System (1.1~1.3) is considerably more complicated than the usual
equations of hydrodynamics. This is due, in the first place, to the con-
siderable nonlinearity of the magnetic force MV H in the Navier-Stokes
equation. Furthermore, motion in an nonuniform magnetic field is
always nonisothermal, and this is due to cooling of the magnetic when
it moves into weak-field regions. Consequently, in the cases of the
nonuniform magnetic fields that are of practical interest, the well-
known one-dimensional solutions of ordinary hydrodynamics (Poiseuille
/"flow, Couette flow, etc.) cease to be one~dimensional and, as a result,
are inaccurate. In §§2 and 3, we consider ferrohydrodynamic analogies
of Poiseuille and Couette flows.

§2, Let us consider the motion of a viscous ferro-
magnetic fluid in a plane layer of thickness 21, caused
by nonuniformity of the magnetic field. A strong uni-
form field Hy is directed across the layer; a field
gradient along the layer is necessary for motion of the
fluid. Then, the occurrence of alongitudinal magnetic-
field component that varies across the layer follows
from Eq. (1.3.3). In a nonmagnetized medium (M = 0),
Egs. (1.3.2) and (1.3.3) are satisfied by

H,=H, + Az, H,=Az. (2.1)

The presence of M in (1.3.2) causes solution (2.1)
to no longer satisfy Maxwell equations (1.3.2) and
(1.8.3). We limit ourselves to low field gradient

AL <Ho (2.2)

As will be seen below, even under this condition
the magnetic forces are equivalent to considerable
pressure differentials. It should also be borne in mind
that when condition (2.2) is not satisfied, the field
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drops to zero at distances comparable with the layer
thickness. This violates the fundamental assumption
of total magnetization of the medium. When condition
(2.2) is satisfied, solution (2,1} for the field and

M, =M, M, = (My/ Hy) Az (2.3)
for the moment satisfy Egs. (1.3.2) and (1.3.3) in an
approximation linear in A. Here M, is the saturation
magnetization, which is a function only of temperature,
and in a not too wide interval of variation it can be
represented by the formula [1]

My = o —1). (2.4)

Here, @ and 0 are positive constants and T is the
absolute temperature, Substituting the M and H found
into Eq. (1.1), we obtain

vy = (2n)74 My (B'— 29, v, = 0.

(2.5)

If we compare this motion with ordinary Poiseuille
flow, we see that the role of the pressure differential
Ap is played here by MAH. Let us estimate the effect.
if the volume concentration of ferromagnetic particles
is on the order of 0.1, then M, ~ 10* erg/G + cm?, and
when AH ~ 10? Oe we obtain an effective Ap ~ 1 atm.
This magnetic pressure can equalize the hydrodynamic
pressure differential (magnetic mirror).

In an approximation quadratic in Al/H,, the longi-
tudinal velocity does not vary, and from (1.2) we find
the temperature distribution over the layer thickness

A2Moa
24yme,,

T—7, [1 + (514 — 61222 + z4)].

(2.6)

Temperaiure inhomogeneity is caused by the magnetocaloric effect,
i.e., by heating of the magnet when it moves into the strong-field
region. Since the most intense fluid motion occurs near the center of
the layer, the maximum temperature is also found there. This, in
turn, results in partial demagnetization of the heated regions of the
fluid (2.4), causing additional magnetic forces directed across the
layer. Together with inhomogeneity of Hy, this results, in an approx-
imation quadratic in A, in the appearance of a transverse velocity
component (magnetic convection), i.e., the motion ceases to be one-
dimensional, .

§3. Let us consider a ferrohydrodynamic analog
of Couette flow. Let there be a plane layer with bound-
aries z = =] that move along the x-axis with the veloc—
ities £V. The same assumptions as inthe previous case
are made about the magnetic field, i.e., condition (2.2)
is assumed to be satisfied. Here, however, formulas
(2.1) and (2.3) are not valid even in an approximation
linear in A.

This follows from Eq. (1.2), in which for v we can
substitute the velocity of unperturbed Couette flow Vz/!

V= (__ aTOA) = XVZT (3.1)
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The solution of this equation has the form

T:T(z):TO{i—{—-gg—ciz(lz—zz)] (3.2)

By virtue of (2.4) and (8.2), magnetization is now
already a function of z in an approximation that islinear
in the field gradient. If we solve (1.3.2)and (1.3.3) with
the M(z) found, we obtain

41a®ToV A

H,=Hy+ Az +Zp

(I —2%) + 0 (47),

[

H,=4,+ 049,

M,=a(®—To)— %z (12— 2%) - 0 (4Y),
M= adAHy 0—To)z + 0 (4%, (3.3)

Now we determine the corrections for velocity and
pressure. We seek v in the form

vy =Vz/ 14w (3, v, =0,

(3.4)
where the first term is conventional Couette flow and
w(z) is a correction governed by the magnetic forces.
Then from (1.1) we obtain

{9 ”oy
0=—-L 4+ +ad(0—10),

0w 0P | 4meToV A
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{3.5)

The former of these equations determines w(z) and
the latter gives the pressure distribution over the
layer cross section. It is easy to see that, in the ab-
sence of a hydrodynamic pressure gradient along the
layer, Eqgs. (3.5) lead to the "Poiseuille" correction
for the velocity of Couette motion

w (2) = Cn)~AM, (I — 2?). (3.6)

The interaction of Poiseuille and Couette flows,
which is governed by nonlinearity of the magneticforce,
can be detected only in approximations higher in A.

§4. It was shown above that a magnetic-field gradi-
ent can cause motion of the medium. Because of this,
it is advisable to find out in which cases equilibrium
of the fluid in the presence of VH is possible. Applica~
tion of the rot operation to (1.1) gives it the form

a
EI‘OtV‘:

== rot (v xrot v) + vizirot v - %VMX VH. 4.1)
Hence, we see that a necessary (but not sufficient)
condition for fluid equilibrium is VM X VH =0, or,
in view of (2.4),
VT xVH=0. (4.2)
Thus, in the presence of VH, equilibrium is pos-
sible either if T = const and the field gradient is equal-
ized by external pressure or if VT || VH, In the latter
case, however, the problem of stability of the possible
equilibrium arises. In the example considered below,
the problem of equilibrium stability of a nonuniformly
heated fluid in a magnetic field has a simple solution.

Let the fluid occupy a thin cylindrical layer with radii R and R + §,
where 6 < R, A constant electric current I flows over the inside cyl-
inder, and creates in the layer the magnetic field

HCP:H:_ZI/cr. (4.3)

The temperature at the layer boundaries is given

T(R) =Ty, TR+§ =T —18 BT, 4y

It is easy to see that Eqs. (1.1~1.3) are satisfied by the equilibrium
solution

V=0, To=17,—¥z/8, B, =H,
My=My=a®—~T,+ 92/ 8 (¢ =r-—R). (4.5)

Let us investigate the stability of this equilibrium with respect to
axisynmumetric perturbations that are periodic along the z-axis. For
this, we substitute into Egs. (1.1~1.3):

V,p=po+p, =Ty + T, M,=My+ m, (4.6)
where v, p', T', and m are the perturbations of the corresponding
quantities, If we linearize the equations in the small perturbations and
assume that all derivatives with respect to time are zero (stability
boundary), we find

0= — Vp' + Wi +mVH, divy == 0,

T /aMo) B (4.7
AAYZL) ‘}‘2‘“‘ ot /. (YO =T

Equation (1.3.2) is satisfied identically for axisymmetric perturba-~
tions. We seek the solution of system (4.4) as

v, =w(r) eos kz, v, = v(r)sinkz, v, =0, p’ = s(r)sin kg,

T =1{(rysinkz, m = — aT". (4.8)

Since the layer is thin (8§ < R), we can make a number of simplifi-
cations, First, the sole (radial) component of VH can be written as

(VH)y—= — 2T [ er® = — HE™L,

Furthermore, from the equation divv = 0 it follows that

o= (4.9)
The remaining equations of system (4.7) give
s=n(v" —k%) +at % , kse=n (w'—khr),
o al:H (4.10)

— L v p =y (7"~ k).
§ Re,,
In the latter equation, T is replaced by T), with use of the small-
ness of & as compared with T,. System (4.9-4.10) is to be solved under
the following boundary conditions when x equals 0 and &:

Ve=w =7 = 0.

(4.11)
Eliminating s, v, and w from the equations, we obtain
d2 3, alH | § al\H
. —k? k2 = = . — . P
<d$2 , ) T4 Chr=0, C o (T o ) (4.12)

The solution of boundary-value problem (4.11~4,12) (in the first
condition for v and w we can substitute the conditions for the higher
derivatives of 1) determines C(kz), and the minimum of this function
corresponds to the stability boundary. It should be noted that the prob-
lem in question is entirely equivalent after the approximations to the
problem of stability of a plane horizontal fluid layerheated from below
in a gravity field, wherein C8* plays the role of the Rayleigh number.
Therefore, we can use the calculation results of Pellew and Southwell
{2], and this yields (C54)min = 1710, or for the critical temperature
gradient:

s R | aTH o
A= MM g7qg XN a1y — — .
[ aH8 ' Re, A =170 pepot {4.13)

As should be expected, instability ‘occurs only when § is positive,
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The expression for the critical temperature gradient in the problem
of convective stability of a plane layer [2] is given in (4.13) for com-
parison.

As is apparent, the magnetic field gradient HR™2 plays a dual role,
On the one hand, it is equivalent to the gravity field g, i.e., it causes
convection; the pyromagnetic coefficient ¢ is equivalent in this case
to the coefficient of volume expansion 8. On the other hand, the mag-
netic field is a stabilizing factor (the second term in (4.13)), This is
explained by cooling of the fluid when it moves into the weak~field
region. Therefore, the critical temperature gradient as a function of
HR™ has a minimum when

H\e X0,
( = )o_ 110 (4.14)

This field gradient corresponds to

el (1)
¢y R )o

o=
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An estimate according to (4.14) gives for (HR™Y), a value on the
order of 6'2(103—104) Oe/cm. Thus, the magnetic field has a stabi-
lizing influence only for large values of its gradient. In all situatioms
of practical interest, therefore, the critical temperature gradient de-
creases as the field increases.
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